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ABSTRACT 
 

The Air Force and other Department of Defense (DoD) computer systems 

typically rely on traditional signature-based network IDSs to detect various types of 

attempted or successful attacks.  Signature-based methods are limited to detecting known 

attacks or similar variants; anomaly-based systems, by contrast, alert on behaviors 

previously unseen.  The development of an effective anomaly-detecting, application-

based IDS would increase the Air Force’s ability to ward off attacks that are not detected 

by signature-based network IDSs, thus strengthening the layered defenses necessary to 

acquire and maintain safe, secure communication capability.   

This system follows the Artificial Immune System (AIS) framework, which relies 

on a sense of “self,” or normal system states to determine potentially dangerous 

abnormalities (“non-self”).  A method for anomaly detection is introduced in which 

“self” is defined by sequences of events that define an application’s execution path.  A set 

of antibodies that act as sequence “detectors” are developed and used to attempt to 

identify modified data within a synthetic test set.   
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USING SEQUENCE ANALYSIS TO PERFORM 
APPLICATION-BASED ANOMALY DETECTION  

WITHIN AN ARTIFICIAL IMMUNE SYSTEM FRAMEWORK  
 

1. Introduction 

The Air Force and  other Department of Defense (DoD) computer systems typically rely 

on traditional signature-based network IDSs to detect various types of attempted or 

successful attacks. Information protection is a great concern of the DoD; even though no 

classified data is supposed to be kept on computers connected to the internet, penetration 

of an unclassified system could result in the compromise of sensitive data that could be 

used to negatively impact DoD personnel and resources.  With applications such as the 

Air Force Portal making it possible to consolidate data from varied sources, the defensive 

information warrior must also consider the possibility of data aggregation leading to the 

presence of classified content on an inadequately protected, publicly reachable system.   

The development of an effective application-based IDS would increase the Air Force’s 

ability to ward off attacks that are not detected by signature-based network IDSs.  This 

increased ability would strengthen the layered defenses necessary to acquire and maintain 

safe, secure communication capability.   

 

1.1 Overview of Threat 

An intrusion can be defined as “any set of actions that attempt to compromise the 

integrity, confidentiality, or availability of a resource.” [Head90]  An attacker attempts to 

subvert system security to gain access to information, alter information, or deny use of 
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the system to other users [Cros95a].  Most exploits used by attackers take advantage of a 

fault or vulnerability that is known to be present in a target system. 

 

1.2 Overview of IDSs 

An intrusion detection system (IDS) can be a valuable contributor to the defense of 

a computer system.  The term “intrusion detection” is something of a misnomer; the term 

is not appropriately descriptive.  The purpose of an IDS is to detect behavior that could 

result in inappropriate access, modification, or destruction of system resources.  A pure 

IDS is a reactive form of defense; it does not attempt to stop an intrusion, merely creates 

an alert that can be investigated by an analyst. 

 

1.3 Research Focus  

This thesis investigation appropriates methodologies for application-based anomaly 

detection using event sequence pattern detection. Most intrusion detection systems (IDSs) 

currently in use utilize signature-based methods that are limited to detecting known 

attacks or similar variants.  Anomaly-based systems, by contrast, alert on behaviors 

previously unseen. The system follows the Artificial Immune System (AIS) framework, 

which relies on a sense of “self,” or normal system states, to determine potentially 

dangerous abnormalities (“non-self”).  The majority of research on anomaly-based 

intrusion detection has involved network-based IDSs.  The incidence of attacks wherein 

the attacker disguises an attack to subvert a network-based IDS is on the increase.  As 

part of a defense-in-depth approach, it is important to develop models that perform 
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anomaly-based intrusion detection at the application level.  An application-based system 

offers the advantages of being able to be tailored to the limited set of execution paths that 

can occur.  This research is accomplished by simulating the output of an application that 

has been instrumented with code that documents the order of a series of “events.”  

Antibodies are developed to use the sensor information as inputs to characterize both the 

“normal” process execution and abnormal execution (as from attacks/exploits).   

1.3.1 Scope 

Application-based intrusion detection is necessarily limited to analyzing data from input 

to the application and any events that occur as a result of the input.  This research focuses 

primarily on normalcy and anomaly of execution paths, although the model presented is 

extensible to other monitorable event sequences. 

 

1.3.2 Hypothesis 

The hypothesis is that event sequence descriptors can be used to detect anomalies in 

application paths using genetic programming techniques within an Artificial Immune 

System framework. 

 

1.3.3 Objectives 

The primary objective of this study is to develop an IDS for abnormal process execution 

that can effectively differentiate between normal and anomalous sequences (ordered sets) 
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of events.  The sequence may be interrupted by irrelevant events, and the logic behind the 

ordering is not known a priori. 

This objective is multipart:  

It is necessary to define a set of operators that is adequate to characterize the 

relationships among a set of events that occur during process execution.   

Objective I: Identify and implement any operators necessary to describe temporal 

relationships among relevant events  

 

These relationships may be of varying complexity.  In one case, the occurrence or 

disappearance of a single event may be enough to characterize the effects of an intrusion; 

in another, a set of relations may need to exist where any one of them in isolation would 

be within the set of normalcy.  Therefore, once a set of operators is defined, a plausible 

technique for combining them so as to be able to characterize more complex effects must 

be determined.   

Objective II: Determine an appropriate method of producing descriptors for 

event sequences of varying complexity 

 

Once the descriptors have been produced, a process is needed to categorize the 

descriptor as describing a normal sequence or an anomalous one. 

Objective III: Determine an appropriate method of classifying these relationships 

as “normal” or “anomalous”  
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Intrusion detection is often considered in isolation from the actions that must be 

taken subsequent to detection.  Once an intrusion has occurred, there is a limited amount 

of data available from which a human analyst must draw conclusions.  A problem 

inherent to anomaly-based ID is that it is difficult or impossible to differentiate between 

benign and malignant anomalies.  This analytical step generally must be perfo rmed by 

human analysts post-mortem, and is both time-consuming and tedious.  

Objective IV: Determine a method to extract and consolidate data that may assist 

human analysts in locating the point at which an anomaly occurs. 

 

1.3.4 Approach 

A set of software “sensors” can be placed within the code of an open-source 

application.  Each “canary” sensor is designed to issue an “alert” when the section of 

code in which it is embedded is reached, thus locating the point in the program flow.  A 

sequential log represents the order of triggered sensors as a one-dimensional array of size 

m where log entry[m] represents the mth sensor to trigger.  The assumption is that a 

sufficient number of sensors placed at selected locations can provide enough information 

for an analyst to detect inappropriate activity by performing temporal analysis on the 

output.  This research assumes the pre-placement of sensors and the existence of an 

output log (an appropriate method of simulating these logs is described in Chapter 3).  A 

set of “self” (normal) logs are used to train the system using the principle of negative 

selection; from these logs, a genetic programming engine can fill an antibody database 

consisting of non-self event sequence descriptions.  These antibodies are then deployed 
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on a test set composed of both self and non-self (abnormal) logs, resulting in a 

classification of each log.  Analyst evaluation of the results creates a feedback loop to 

update the antibodies.    Potential system utility can be inferred based on the accuracy of 

these results.   

 

1.3.5 Assumptions  

Several assumptions are: 

1. It is assumed that each application contains an essential “skeleton” of events of 

limited number, such that a basic “template” describing all possible sequences of 

events can be characterized by a regular expression.  The words produced when the 

regular expression is fully enumerated compose the regular language of normal event 

sequences.   

2. It is assumed that exploitation of a system’s vulnerabilities involves abnormal use of 

the system; therefore, security violations can be detected from abnormal patterns of 

usage [Denn87].   

3. It is assumed that certain categories of intrusion attacks result in a change from the 

standard execution path(s) and/or affect the timing of progress through the path.  This 

assumption is further explained in Chapter 2.  If assumptions 1 and 2 are accepted, 

then it is realistic to assume that these intrusions should be detectable if a reliable way 

of characterizing the patterns of events within the execution paths is determined.  
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4. It is assumed that a basically stable environment exists regarding the instrumented 

application.  This assumption is reasonable because a single application has a limited 

set of appropriate inputs that results in the execution of a limited set of paths.   

1.4 Document Overview 

This chapter describes the motivation and primary objectives for this research: to 

provide a “proof of concept” for an application-based IDS, using the AIS paradigm and 

incorporating genetic programming techniques, that is capable of classifying event 

sequences as normal or anomalous.   

Chapter 2 describes essential background research and literature required to better 

understand the problem and prior solution methods.  Chapter 3 provides a high- level 

overview of the methodology used in this research, while Chapter 4 discusses design and 

implementation details.  Chapter 5 describes experiment design and results.  Chapter 6 

summarizes major conclusions and provides a description of proposed future work. 
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2. Background and Literature Review 

 

2.1 Introduction 

 In this chapter, background material and relevant prior research that establish the 

foundation for this thesis effort are presented.  Section 2.2 discusses intrusion detection 

systems. Section 2.3 discusses evolutionary algorithms (with emphasis on genetic 

programming and artificial immune systems).  Section 2.4 discusses system and 

application vulnerabilities, while Section 2.5 discusses various types of attacks that are 

enabled by these vulnerabilities.  Presented in Section 2.6 are several interesting 

analytical methods that can be used to monitor the effects of attacks.  Section 2.7 

describes a method for generating anomalies for system testing.  A description is given of 

each concept and how it relates to the thesis research. 

 

2.2 Intrusion Detection Systems  

In general, IDSs are of three types, network-based, host-based, and application-

based, and use one or both of two detection methods, signature and anomaly. Network-

based detection involves watching network traffic for patterns of suspicious activity.  

Analysis may be performed for each host or at a centralized location that attempts to 

correlate activity across the network. Host-based detection involves monitoring the 

activities of users and/or processes on a single machine [Guns00].  Application-based 

detection is a subset of host-based detection in that it involves monitoring processes at the 

host level, but is considered a separate type because of the difference in focus.  Signature 
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(or misuse) detection is a problem of matching patterns of activity, network or system-

level, against a database of known attacks.  Any attacks with patterns that match those in 

the database can be identified prior to reaching the host.  Most IDSs deployed currently 

are signature-based.  Adversaries, knowing that signature-based IDSs are installed on 

government networks, continue to develop and deploy new attacks that evade detection; 

it is to detect these new attacks that anomaly-based IDSs are necessary.  Anomaly 

detection is subtler and requires an IDS to identify events or patterns of event occurrences 

that are unprecedented in the system. Not all anomalies indicate intrusions, however; 

some form of classification system is needed to attempt to differentiate between these 

two sets.   

Each type has certain inherent advantages and disadvantages.  Both network and 

host-based systems face the problem of balancing the amount of data gathered and 

processed against desired speed.  Network-based systems have the advantage of being 

able to screen packets before they can do harm to the system.  Host-based systems have 

the advantage that they can detect inappropriate behaviors caused by exploits that have 

been altered to evade network-based detection.  Host-based systems also do not have the 

problem that network-based systems do with encrypted packet content.  If an attacker 

attempts to use an attack with a specific signature that involves part of the packet header, 

it may be more efficient to catch this attack at the network level, thus preventing it from 

completing.  However, this method is ineffective against attacks if the attacker alters the 

code enough to destroy the signature, or disguises the signature through the use of 

encryption or mutation engines.  Also, a new attack, until it is analyzed, may have no 
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known signature, in which case the packets slip past the network-based IDS.  At this 

point, the only hope for the system is that the attack is caught by a host-based system.  

Even the host-based system may fail to catch the attack if it designed only for misuse 

detection and is not attempting to detect anomalous behavior.  These examples illustrate 

that a secure defense system may need to incorporate both types and methods of intrusion 

detection. 

Research Impact 

This research is limited to anomaly-based, application-based intrusion detection.  It is 

important to have some sense of the limitations of this method.  Ideally, such a system 

would be paired with an efficient signature-based, network-based IDS that would serve to 

identify the majority of attacks before they reached the host.  The system would be 

responsible for attacks that are undetectable by that layer of defense. 

 

2.3 Evolutionary Algorithms (EAs): 

Evolutionary Algorithms are stochastic search techniques that use computational models 

of evolution [Heit00].  Stochastic searches are used in problem domains where the search 

space is too large to cover deterministically. A stochastic search is not guaranteed to find 

an optimal solution for a particular problem; however, a well-designed stochastic search 

can often find satisficing solutions in reasonable time [Mich02].  Functions inspired by 

biological genetics are used within an “artificial selection” framework that results in a 

form of guided evolution.  The term “genotype” is used in biology to refer to the genetic 

material of an individual – its “blueprint” for construction; with EAs the genotype is the 
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software representation of an individual solution candidate.  This is the level at which the 

data structure can be manipulated by operators.  The term “phenotype” is used to refer to 

the functional interpretation or evaluation of an individual [Foge95].  The Subclasses of 

EAs include genetic algorithms, genetic programming, evolutionary programming, 

evolutionary strategies, and classifier systems; despite their differences in representation, 

selection methods, and mutation operators, they are all related by the use of a model of 

biological evolution [Heit00].    

Research Impact 

This concept is relevant because an anomaly-based IDS requires some method for 

differentiating between self (appropriate use of an application) and non-self  (attack).  EA 

techniques can be used to automatically define or refine a model of normal (or abnormal) 

usage as well as to determine classification of unknown data. 

 

2.3.1 GAs  

Rather than explicitly creating a solution for a given task, the goal of the 

programmer is to design a system that rewards fitness of solutions.  These systems use 

biologically inspired functions and artificial selection to “evolve” a solution to a 

predetermined problem. The system generates an initial population of “chromosomes.”  

In GAs, these chromosomes are fixed- length binary or character strings.  With each 

generation, each individual in the population is evaluated and assigned a fitness value 

according to how well it accomplishes the task.  Pairs of “parent” chromosomes are 

selected from the population based on their fitness, and their genetic code is manipulated, 
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creating a new generation of chromosomes.  This process continues until an adequate 

solution to the problem is found.  Generally, the manipulation operators used are 

recombination (or crossover) and point mutation. [Heit00] 

 

2.3.2 GP 

Genetic Programming (GP) is similar to GA; however, in GP, the chromosomes are 

composed of operators and operands (terminals) that usually represent a simple meta-

language tailored for a particular problem [Koza92].  GP uses recombination, and, to a 

lesser degree than GAs, point mutation.  The result of evolution in this case is a set of 

programs that can be run within an interpretive system.  GP solutions are not generally 

fixed- length, and the chromosome is often represented as a tree.  As a result, they are 

more flexible in the range of their representations [Koza94].  Crosbie and Spafford have 

done exploratory work with applying GP to intrusion detection; however, their agent-

based system relies on network data, not host-based data. [Cros95a, Cros95b, Cros95c] 

Research Impact 

The difference between GA and GP is critical to this research.  IDS solutions utilizing a 

GA-based search engine are generally limited to examining data within a fixed window 

size proportional to the size of the GA chromosome.  GP, with its function set and 

differently sized representations, is much more amenable to being used to examine data 

within a wide range of window sizes.  This difference makes the GP search space larger, 

but also makes the solutions potentially more descriptive and useful.  For this research, 
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these benefits are used to both detect patterns over the course of an execution path and 

provide data about the patterns to analysts for forensic purposes.  

  

2.3.3 Artificial Immune Systems  

Artificial Immune Systems (AISs) include any machine learning system that applies 

biological immunology strategies to a problem.  According to [Nune00], J. D. Farmer 

was the first to incorporate aspects of the immune system model into artificial 

intelligence techniques in his paper “The Immune System, Adaptation, and Machine 

Learning;” however, Stephanie Forrest first demonstrated its applicability to anomaly 

detection in IDSs.  A biological immune system develops antibodies that are selected 

based on their ability to distinguish between “self” (cells, molecules of the body) and 

“non-self” (antigens - any foreign material).  A computer intrusion detection system can 

be designed after this model [Dasg98].  The system must be able to form descriptions of 

“self” – normal events (system behavior, network traffic, etc) [Forr92].  A representation 

of an event pattern corresponding to an antibody is generated and compared to the self 

descriptions.  If it matches, it is destroyed through Negative Selection; if it does not 

match, it is a potential identifier of non-self events.  Once enough of these antibodies are 

generated, they are released into the system.  If any antibodies find a match, it is 

considered a non-self antigen of some sort and is flagged as a potential intrusion 

[Forr97].  It can be seen that there are inherent limitations to AISs that are not present in 

biological immune systems, the most important of which is the inability to exploit the 

massive true parallelism available to autonomous antibodies within a living organism; 
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however, it is still a useful model for intrusion detection.  One method used by Forrest 

and Hofmeyr  involved determining “normal” for UNIX processes was accomplished by 

correlating system calls within a fixed-size time window [Forr96, Hofm98].  Research at 

AFIT has also involved AISs, most notably the Computer Defense Immune System 

(CDIS) [Will01], a descendant of the Computer Virus Immune System (CVIS) [Harm00].  

CDIS uses antibodies to detect single packet attacks on a network, using a database of 

known “normal” traffic to define self.  CDIS also uses a distributed AIS architecture. 

Research Impact 

The AIS paradigm is used in this research by training the system on a set of “self” data 

representing logs created as a result of normal application use.  Testing is accomplished 

by using a data set consisting of previously unseen normal logs as well as modified logs 

representing non-self. 

 

2.4 Types of Vulnerabilities 

Aslam, Krsul and Spafford document a fault classification scheme for UNIX processes 

based on faults detected using software engineering methods [Asla96].  The scheme 

describes the following types of faults: 

1. Boundary condition errors : These errors caused by inputs at the boundaries of 

the acceptability range can be detected with test cases using Boundary Value 

Analysis for functional testing of modules. 
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2. Input Validation Errors : These are errors caused as a result of a module failing 

to validate input from another module or process.  They can be detected with syntax 

testing to validate format or path analysis to detect inappropriate execution paths 

3. Access Validation Errors : These errors result from incorrectly specified 

condition constructs.  They can be detected with path analysis or Branch and 

Relational Operator testing. 

4. Failure to Handle Exceptional Condition Errors : These errors include 

unanticipated return codes and failure events.  They can be detected by path analysis 

testing on critical sections of code. 

5. Environment errors : These errors are more difficult to define and test, as they are 

dependent on idiosyncrasies specific to a particular machine, OS, or configuration.  

Mutation testing has been successfully applied to detect some of these problems. 

6. Synchronization Errors : These errors result from improperly timed operation in 

the when a specific temporal relation is critical.   

7. Configuration Errors : These are faults introduced after the software has been 

developed, during the maintenance phase.  Static audit tools are of some use in 

detecting these errors. 

 

The Fault Classification Scheme is as follows [Asla96]: 

1. Coding faults 

Definition: faults that were introduced during software development 

a. Synchronization errors  
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Definition: a fault resulting from an exploitable timing window, or a fault 

resulting from improper serialization of operations 

b. Condition validation errors  

Definition: faults resulting from those cases where (1) a condition is missing, (2) a 

condition is incorrectly specified, or (3) a predicate in the condition expression is 

missing 

2. Emergent faults 

Definition: faults where the software performs according to specification but still causes a 

fault 

a. Configuration errors  

Definition: faults that result from (1) a program being installed in the wrong 

place, (2) a program installed with incorrect setup parameters, or (3) a secondary 

storage object or program installed with incorrect permissions 

b. Environment faults 

Definition: faults that result from insufficient attention being paid to the runtime 

environment, or faults that occur when modules interact in an unanticipated 

manner.  

Note that while this classification system was designed to describe UNIX process faults, 

they are general enough to apply to non-UNIX applications as well.  Most exploits take 

advantage of one of these faults that is known to be present in a target system. 
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Research Impact 

While this information is not directly used in the implementation of the research system, 

the body of data regarding faults and fault testing would be invaluable to the researcher 

who is attempting to “fine-tune” a set of sensors within an application.  A knowledge of 

common faults could allow for extra-dense sensor placement in areas that might 

potentially be vulnerable, although this would be time-consuming if not automated (see 

Zamboni’s work, Section 2.6.3).    

 

2.5 Types of Attacks  

Heady et. al. define an intrusion as “any set of actions that attempt to compromise the 

integrity, confidentiality, or availability of a resource.” [HLMS90]  This definition can be 

elaborated upon: 

Confidentiality, integrity, and availability are the three Critical Information 

Characteristics of the Information Systems Security Model.  Confidentiality is the 

assurance that access controls are enforced.  Integrity ensures the accuracy, relevance, 

and completeness of data.  Availability ensures that information is provided to authorized 

users when it is needed.  These characteristics represent the full spectrum of security 

concerns in an automated environment [NSTI94]. An attacker attempts to subvert system 

security to gain access to information, alter information, or deny use of the system to 

other users [Cros95].  The impact of an attack can be determined by examining how it 

impacts these three characteristics.  Several examples are presented.  
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Scanning 

A successful scan may reveal information about the topology of a network.  Such 

information is useful to the attacker, who uses it to determine which systems present the 

most tempting targets, and which exploits might be effective against them.  The nmap 

tool, for example, is used to identify live systems, perform operating system guessing, 

and scan for open ports on a system.  [Scam01].  There are defensive steps that can be 

taken to eliminate or mitigate the success of such scans, but this becomes more difficult 

and resource-consuming as the scans become more sophisticated and complex.  Scanners 

are important weapons in the arsenal of the attacker, but they are not in themselves 

sufficient to violate any of the three Critical Information Characteristics. 

Denials of Service (DoS) 

It is generally much easier to disrupt the operation of a network or system than to gain 

access or escalate privileges on a system.  There are several types of DoS attacks, 

including bandwidth consumption, resource starvation, application crashing, and 

manipulating routing tables and domain name servers [Scam01].  These attacks primarily 

affect the availability of the system, although application crashing may lead to a loss of 

data (integrity) and manipulating routing data is a violation of integrity and, perhaps, 

confidentiality as well.  The commonest DoS attacks are the ones that limit themselves to 

bandwidth consumption and resource starvation. 

Buffer Overflows   

A buffer is a contiguous block of memory.  A buffer overflow occurs when a value is 

read or pushed into a buffer that is too small for it, resulting in the overwriting of data.  A 



 

19 

buffer overflow exploit involves crafting a value such that when the overflow occurs, 

control data or variables are overwritten with the desired data.  Buffer overflows come in 

two flavors, stack-based and heap-based, although stack-based exploits are by far the 

most common.  Over 60% of the advisories issued by Carnegie Mellon University’s 

Computer Emergency Response Team in 2001 dealt with this kind of exploit [Ent01].  A 

successful stack-based buffer overflow exploit allows arbitrary code to be executed, 

usually for the purposes of escalating privileges.  In the UNIX environment, exploits are 

run on applications running with root privileges, or on applications that are root-owned 

and have the setuid bit set (“set user ID on execution” – allows user1 to execute a 

program owned by user2, with user2’s privileges).  As root, the attacker has complete 

control of the system.  Once the exploit is run, the process on which it is being run 

generally crashes.  This situation represents a violation of confidentiality (the attacker has 

subverted access controls to achieve access to every piece of data on the system), 

integrity (the attacker can arbitrarily modify elements of the system), and availability (the 

attacker can take down any part of the system).  Thus it can be seen that buffer overflow 

exploits represent a serious problem to computer security. 

Race Conditions   

A race condition can be defined as anomalous behavior caused by the unexpected 

dependence on the relative timing of events. Put simply, one occurs when a privileged 

process opens a vulnerability with the implicit assumption tha t it will be able to close the 

vulnerability before it can be exploited; an operation is treated as atomic when it is in fact 

not [Bish96].  In certain situations, a race condition can be exploited for the purpose of 
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escalating privileges or to access protected data.  Bishop and Dilger note that most of 

these attacks exploit flaws in a privileges program, or concurrent execution with a 

privileged and unprivileged program; few exploit operating system flaws.  They were 

able to characterize various race conditions by describing them as “a minimal set of 

environmental information and a minimal sequence of actions [that result] in a breach of 

security.”  Specifically, they identified the following conditions that indicate the 

possibility of a race condition: 

- Two sequential system calls refer to the same object using a file path name 

- A system call refers to an object by name and the second call uses a file descriptor, 

and the first call is not a call that maps a file path name to a descriptor 

They tested for the presence of race conditions by using a analyzer program to scan code 

for such sequences, then providing the information to a human analyst who evaluated the 

environmental conditions [Bish96].  This method is a preventative; it does not detect 

attacks, but instead attempts to identify (and subsequently eliminate) the conditions 

which enable attacks. 

Research Impact 

For the purposes of this research, only intrusions that can lead directly to a breach of 

confidentiality or integrity regarding the information contained on a host are considered.   

 

2.5.1 Effect of Intrusions  

There are myriad indicators that an attack is occurring or has occurred, if the appropriate 

monitors are in place to identify the symptoms.  This is not to say that it is reasonable or 
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even possible to monitor all effects.  A few examples of effects can be provided to give 

the reader an idea of the scope of the intrusion detection problem.  The abstract term 

“event” is used to describe a range of actions that cause or indicate a change in the state 

of a system [Kunz93].  Thus, the term “events” can encompass system calls, libraries 

accessed, sections of code executed, change of variable value, or change in resource load.  

From the discussion of attacks above, it can be seen that the effects of most attacks can be 

generally grouped into one or more of the following categories:  

- Unusual or improper sequencing of events 

- Additional unusual events 

- Missing events 

- Unusual time delay between events 

The implication attached to all categories is that the abnormalities exist with respect to 

normalcy.  If an IDS cannot differentiate between normalcy and attack, then it is 

ineffective. 

Research Impact 

This concept is relevant because the research system should theoretically be extensible to 

detecting any of these attack effects with respect to any monitorable event types, even 

though only execution paths are represented for the purposes of scope.  
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2.6 Methods of Monitoring Event Relationships  

The four categories in Section 2.5.1 can be condensed further into the concept of 

“relationships among events.”  Techniques that can be utilized to characterize or identify 

such relationships follow:  

 

2.6.1 Path Profiling 

Path profiling techniques are useful for characterizing execution paths of an application.  

A common application of path profiling is for software testing, where it is important to 

evaluate a program against a representative set of test data.  Effective path profiling can 

identify unexecuted statements or control flow.  Ball and Larus present a technique that 

uses a spanning tree to efficiently instrument a program such that path encoding is 

compact and minimal [Ball96].  Their implementation, PP, runs exclusively on SPARC-

based machines; however, the same techniques that are used in their algorithm could be 

useful to characterize intrusion types that affect the execution path of an application.   

Research Impact 

Path profiling using a technique such as that encoded in PP would be an excellent way to 

perform basic application instrumentation.  Using this method would ensure at a 

minimum that the various paths were represented, even if all the sensors required to 

detect anomalies were not placed. 
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2.6.2 Temporal Signatures 

Recently, Doyle et. al. have proposed an approach based on an event-characterization 

language that incorporates and extends signature and anomaly methods.  This method 

combines knowledge about activities, temporal regions, and environmental information 

to define a “trend.”  Their recognition system can use this trend template both for the 

purposes of identification and in explanation processes [Doyl01a, Doyl01b].  

Research Impact 

Timing changes can be a way to detect intrusions.  For example, a buffer overflow may 

result in no significant difference in execution path, while creating a significant time 

delay while the attack code is executed.  The practicality of describing event timing is 

discussed in Chapter 6. 

 

2.6.3 Embedded Sensor Protection (ESP) 

Zamboni presents in his thesis the Embedded Sensor Protection (ESP) system, in which 

he uses small pre-positioned pieces of code within the OpenBSD operating system to set 

flags during runtime.  Based on the sensors that are set, he demonstrates that patterns can 

be found that allow for the identification of certain attacks on the host [Zamb01].  While 

the idea is intriguing, his implementation presents several problems.  First, all sensors 

must be individually hand-coded, and their placement individually determined based on 

analysis of the open source code.  This method is not only time-consuming but would 

clearly not be applicable to the more common scenario wherein one is faced with 

developing a defensive system for a host running an OS that does not have publicly 
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available source code. Furthermore, all his sensors are developed and placed based on 

knowledge (acquired during vulnerability research and analysis of the code) of specific 

vulnerabilities known to be exploitable by a would-be intruder.  These specifically–

tailored sensors cannot be built without a priori knowledge of these logical flaws.  It 

follows logically that if the exact positioning of every flaw in a selection of code was 

known, the vulnerabilities could easily be fixed. A relatively secure system could thereby 

be created with much less effort than is required to write the sensors, test the system 

against known attacks, and perform pattern matching to attempt to identify similar attacks 

in the future. 

Research Impact 

The ESP system demonstrated the utility of using an embedded sensor system.  This 

research to a certain extent builds on the ESP system conceptually by attempting to 

extend the utility of such a system to the case where each sensor is not hand coded and is 

not specifically placed at fault points. 

 

2.7 Generating Anomalies 

Testing an anomaly-based system requires, obviously, a set of anomalies as test cases.  

Previous research has used both real attacks and artificial, generated anomalies.  Both 

techniques have associated benefits and limitations. 

Real Attacks 

The most intuitive reason for testing against real attacks is that they are accurately 

descriptive of the real threat.  Conveniently, real attacks exist in huge repositories at 
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“computer security” sites such as packetstorm (www.packetstorm.org), catalogued by 

operating system and application.  It is possible to monitor the effects of real attacks in a 

variety of ways and be confident that the effects are real and not an artifact of abstraction.  

The limitation is that they may not be representative or general enough to appropriately 

test a system’s classification mechanism.  There are simply not enough non-DoS attacks 

available for any single application to create a statistically relevant amount of test data.   

Artificial Anomalies 

Fan et al describe the goal of generating artificial anomalies as “to coerce an arbitrary 

machine learning algorithm to learn hypotheses that separate all known classes from 

unknown classes.”  In contrast to real attacks, artificial anomalies must be generated.  

The benefit of such a method is that a larger, more diverse set of data can be created, 

leading to more general models of self and non-self.  Fan et al use their algorithm to 

design “’near misses,’ instances that are close to the known data, but are not in the 

training data.” [Fan01] 

Research Impact 

It seems that such a technique could be used at a layer of abstraction – if a plausible 

technique for characterizing “self” could be determined a priori, a wide range of “near 

misses” could be designed based on that characterization.  These anomalies could help 

test the limitations of an IDS. 
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2.8 Summary 

This chapter reviewed several background topics considered necessary for the foundation 

of this research.  The topics discussed included intrusion detection systems, evolutionary 

algorithms, system and application vulnerabilities, as well as various types of attacks that 

are enabled by these vulnerabilities.  Several analytical methods used to monitor the 

effects of attacks and a method for generating anomalies were also discussed.   
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3. High-Level Design 
 
3.1 Introduction 

This chapter outlines the methodology for the production of AIS detectors that can 

be used within an application-based, anomaly-detecting IDS.  The goal of this system is 

to use a number of event sequence logs based on execution path markers and analyze 

their order to find patterns that describe non-self sequences.  These patterns are 

incorporated into antibodies used by Genetic Programming agents in an attempt to do 

sequential event analysis of potential intrusions.  This chapter discusses specific research 

objectives and examines solution methodologies. In addition, technical issues that 

surfaced along the way are presented.  Solution designs for each research objective and 

challenge are explained in more detail in Chapter 4. 

 

3.2 Overview of Objectives 

1. It is necessary to define a set of operators that is sufficient to characterize the 

relationships among a set of events that occur during process execution.   

2. These relationships may be of varying complexity.  Therefore, once a set of operators 

is defined, a plausible technique for combining them so as to be able to cha racterize 

more complex effects must be determined.   

3. Once the descriptors have been produced, a process is needed to categorize the 

descriptor as describing a normal sequence or an anomalous one. 
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4. A problem inherent to anomaly-based ID is that it is difficult or impossible to 

differentiate between benign and malignant anomalies.  This analytical step generally 

must be performed by human analysts post-mortem, and is both time-consuming and 

tedious.  The fourth objective concerns an attempt to extract and compile data to 

assist the analyst in making this determination.  

The methodology is designed to address all these objectives. 

3.2.1 Desired Characteristics of System 

The system is application-based; it is not designed to detect scans, DoSs that 

overload resources or tie up bandwidth, or any other attacks in the realm of network-

based intrusion detection.  

The system is designed to use event logs.  This level of abstraction provides 

several benefits.  It allows testing of the system against a variety of simulated attack 

types.  Logs can be transferred from any system to a single Analysis System, so 

“portability” is not an issue.  This log transfer is also good for security: attackers tend to 

cover tracks on victim systems, so it is good security practice to keep records elsewhere.  

Lastly, by using logs, the potential of a Denial of Service being performed against the 

IDS is eliminated.  Attackers often attempt to “flood” a system with data if they are 

aware (or suspect) an IDS is on it.  This overloading can cripple or crash an IDS that is 

attempting to perform detection in real-time, in which case any attacks performed after 

the DoS are missed.   

It is assumed the test application is instrumented with sensors using path profiling 

techniques, or by random dynamic instrumentation (see Chapter 6) if only the executable 
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is available.  These “canary” sensors are individually and uniquely identified; when their 

code is executed, they “trigger” and write their identifier to a log.  A sequential log 

represents the order of triggered sensors as a one-dimensional array of size m where log 

entry[m] represents the mth sensor to trigger.  The system is given a training data set of 

“self,” non-attack logs that is uses to develop a set of antibodies.  These antibodies 

represent event sequence relationships unbounded by event size windows.  Genetic 

programming techniques are used to develop these antibodies, as GP was determined to 

be an appropriate way to develop a range of differently-sized antibodies appropriate for 

the task.  These antibodies are then “deployed” against a test set consisting of both self 

and non-self logs to determine the efficacy of these techniques.  Analyst evaluation of the 

results creates a feedback loop to update the antibodies.     

 

3.3 High-Level Design 

The design incorporates certain components of the general AIS model.   

3.3.1 Pseudocode for Overall Structure  

create first generation 
do 
{     //TRAIN 

evaluate generation against training set 
negative selection 

select all sirens that do not match self 
perform affinity maturation for selected sirens //OPTIONAL 
place matured sirens in Antibody DB 
replace with newly-created ones 

create next generation 
use EA operations 

}while not enough antibodies 
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//DEPLOY 
for all test cases 
{ 

run antibodies against test case 
provide feedback 

} 
 

 

3.3.2 Design of Program 

 

Figure 1.  A Modified Subset of the AIS Cycle  
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The design incorporates the components of the cycle illustrated in Figure 3.1.   This cycle 

is based on that described by Williams [Will01]. 

 

3.3.2.1 Chromosome Generation 

A design is presented for the GP “sensor analyzers” that are used in the system.  

Because these monitor programs are supposed to sound an alarm in the event of detection 

of a potential intrusion, they are referred to as Sensor-based Intrusion Response Event 

Notifiers, or sirens.  If a siren survives the Negative Section process, it becomes an 

antibody. 

Producing the sirens is a matter of finding an appropriate grammar.  A context-

free grammar (CFG) is a language generator; in this case each chromosome generated is a 

string in the language.  A CFG is used for several reasons.  A context- free grammar is 

used to produce a Type 2 language, and is the minimum level grammar required to ensure 

that all words produced are of the correct structure to enable recombination.  Specifically, 

recombination must always result in well- formed words. This goal cannot be achieved 

with a Type 1 or Type 0 language.  Furthermore, a context-free language is a superset of 

a regular language; therefore if a regular language is sufficient to characterize either self 

or non-self, the regular language can be described as a subset of the context- free 

language.   
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More formally, a context- free grammar G is a quadruple (V, Σ, R, S), where 

[Davi94]: 

V is an alphabet, 

Σ (the set of terminals) is a subset of V, 

R (the set of rules) is a finite subset of (V-Σ) x V*, and 

S (the start symbol) is an element of V-Σ  

 

When using a CFG, one starts with the symbol S and applies the rules defined in R to 

create a word in the language.  In this case, a word is a siren, and the language describes 

potential system events.  Once we know which terminals and functions we need to 

characterize in the system, developing a CFG to automatically generate initial generations 

is relatively simple. 

 

3.3.2.2 Operators and Operands  

This section discusses the set of terminals (operators and operands) necessary for 

this undertaking in terms of functionality and purpose.  Implementation is covered in 

Chapter 4.  

One of the most important things to consider in GP is what terminals need to be 

used. If these terminals are not designed properly, it may be impossible or at least 

improbable that the system can evolve an acceptable solution.  For example, if a system 

were designed to perform symbolic regressions for cubic equations (e.g. f(x)=x3+2) and 

the only terminals defined were “1” and “add,” the system would never be able to find 
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the desired solution.  One would in this case desire additional terminals representing “x” 

and “multiply.” 

Some terminals must be able to represent a set of temporal relations among 

events, as represented by the log files.  Terminals must be able to access and manipulate 

the log data to determine if the relationship represented exists in the log.  For example, it 

might be desirable to describe the following situation:  

Within a certain number n of events beginning at a particular event, Sensor X is 

triggered, then Sensor Y is triggered twice.  Within this same event range Sensor 

Z is triggered; it is not relevant when this occurs with respect to Sensors X and Y.   

For this simple example, operators would be needed to describe the concepts of “[event] 

happens before [event],” “[event] happens within [number of events],” and “[situation a] 

AND [situation b] both occur.”   

How can an appropriate set of operators be determined?  Applying what is known 

about the intrusions against which the system is tested can help solve this problem.  For 

example, buffer overflows have certain basic effects on the application against which 

they are run: they can cause the program to crash, cause arbitrary code to be executed, 

and/or cause other values to be overwritten.  Tied to these effects may be significant 

additional time delay between execution of commands.  Depending on which “events” 

are monitored, there are a variety of ways the effects can be detected.   

A crash could occur after an event e1 that is normally followed by event e2.  An 

operator that represented the happens-before relation is a likely candidate for 



 

34 

differentiating between these two; “e1 happens-before e2” would evaluate to TRUE for 

the normal case, but would evaluate to FALSE for the attack.   

Another possibility involves an attack that does not crash the application, but 

merely executes additional commands prior to returning to normal execution.  If system 

calls are being monitored, the normal case might be represented as {... e1, e2, ...} in an 

event log, while the attack case would be represented by { ...e1, <additional system 

calls>, e2,...” Here the happens-before operator would not be able to distinguish between 

the two logs.  A different operator is required to account for proximity of events; a 

sufficient choice is a happens-within operator.  Assume the existence of a log index 

pointer that is set to point to the first event in a log: e1 in this example.  The function “e2 

happens-within 1” represents the question, “Does event e2 happen within one event of the 

pointer?”  This function is perfectly capable of classifying the two cases, and if the 

number of events is set to the size of the log, this function is equivalent to the happens-

before version.  To move down the log (so that it is possible to characterize relationships 

between any pair of events) requires a function that can reset the index pointer.  This 

requirement is accomplished by adding a similar operator, happens-within-reset, which 

resets the index pointer to point to the event if it is found within the required number of 

events.  Both of these operators evaluate to TRUE if the conditions are met and false 

otherwise.  The happens-within operator is still needed to characterize cases where a set 

of events are present, but in no particular order (e.g. if both sequences {e1, e3, e2, e4} and 

{e1,  e2,  e3,  e4} were considered “self”).  This example also illustrates the need for a 

logical AND operator to link these relationships together. 
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Now consider the simplest form of a case involving a break in execution that 

occurs within a loop:  

Self = {e1, e1} 

Attack = {e1} 

None of the above operators can assist in differentiating between these two logs.  We 

need to add an operator that can move through a sequence even if the events are 

duplicates of the events pointed to by the index pointer.  A next operator that takes event 

e as a parameter will satisfy; it looks for the next occurrence of e and sets the index 

pointer to its position if found.  As above, if it is successful it evaluates to TRUE, 

otherwise to FALSE.   

Are these operators sufficient to characterize sequences?  A more complicated 

example illustrates that they are not.  Consider the following highly abstracted 

pseudocode:  

e1 
if (variable) 

then e2 
 else 

e3 
 e4 
 
If variable = 1, the event log reads: e1 e2 e4; if variable = 0, the event log reads: e1 e3 e4 

This example demonstrates the need for a logical OR.   

 next e1 AND e2 happens-within 1 OR e3 happens-within 1 AND next e4 

This siren describes both these cases. 

 A logical NOT is also useful; if a chromosome describes “self” cases, simply 

negating it may be an efficient way to describe many non-self cases.  
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It may also be required to identify patterns consisting of multiple distinct 

sequences that overlap to some extent; the addition of a previous operator enables the 

discovery of such cases.  It functions similarly to next, but searches backward in the log.  

It can be seen that these terminals can characterize truncation, succession, 

multiple orderings, removal, replacement, repetition, and interlacing of sequences, which 

appears to cover the set of possible attack effects on sequences.  Thus, the required set of 

terminals consist of the following, where 

E is the set of events, 

I is the set of distances between events, 

A represents the evaluation of a function or a logical combination of functions, 

Event e ∈ E, and 

Integer i ∈ I 

Event Relationship Operators  
(Note: Functions only have side effects if so stated) 
e happens-within i: 
Evaluates to:  TRUE if event e occurs within i events of Log Pointer 

FALSE otherwise 
e happens-within-reset i:  
Evaluates to:  TRUE if event e occurs within i events of Log Pointer 

FALSE otherwise 
Side Effect: If TRUE, set pointer to the first occurrence of event e found at or after Log 
Pointer. 
e next 
Evaluates to:  TRUE if event e occurs in the remainder of the log (after Log Pointer) 

FALSE otherwise 
Side Effect: If TRUE, set pointer to the first occurrence of event e found after Log 
Pointer. 
e previous  
Evaluates to:  TRUE if event e occurs in the section of the log prior to Log Pointer 

FALSE otherwise  
Side Effect: If TRUE, set pointer to the closest location of event e found before Log 
Pointer 
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Logical Operators  
A1 AND A2 
Evaluates to:  TRUE if both A1 and A2 evaluate to TRUE 

FALSE otherwise  
A1 OR A2 
Evaluates to:  TRUE if either A1 or A2 evaluate to TRUE 

FALSE if 
NOT A 
Evaluates to:  TRUE if A evaluates to FALSE 

FALSE otherwise  
 

Evaluation Examples 

Given a producible siren 
5 5 happens-within-reset 7 3 happens-within AND NOT 

its value when interpreted on two different logs can be determined. 
 
1. Log = {1 2 3 4 5 6 7 8} 

The pointer is set to 0, so that it points at event 1. 
Evaluate first relationship: 5 5 happens-within-reset 
 This relationship is TRUE; the pointer is reset to 4, pointing to event 5.   

  The TRUE value (1) is pushed onto a stack 
Evaluate second relationship: 7 3 happens-within 

This relationship is TRUE.   
  The TRUE value (1) is pushed onto the stack 

Evaluate AND:  
Two values (1 and 1) are popped off the stack. 
1 AND 1 is 1; the one is pushed onto the stack. 

Evaluate NOT :  
One value (1) is popped off the stack. 
NOT 1 is 0; the zero is pushed onto the stack. 

The end of the siren has been reached; its evaluation is the value on the stack, 
zero.  Therefore, this siren does not match the log. 
 

2. Log = {8 7 6 5 4 3 2 1}  
The pointer is set to 0, so that it points at event 1. 
Evaluate first relationship: 5 5 happens-within-reset 
 This relationship is TRUE; the pointer is reset to 4, pointing to event 5.   

  The TRUE value (1) is pushed onto a stack 
Evaluate second relationship: 7 3 happens-within 

This relationship is FALSE.   
  The FALSE value (0) is pushed onto the stack 
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Evaluate AND:  
Two values (0 and 1) are popped off the stack. 
0 AND 1 is 0; the zero is pushed onto the stack. 

Evaluate NOT :  
One value (0) is popped off the stack. 
NOT 0 is 1; the one is pushed onto the stack. 

The end of the siren has been reached; its evaluation is the value on the stack, one.  
Therefore, this siren matches the log. 

 

3.3.2.3 Training 

The goal of the training stage is to develop a set of sirens that represent non-self 

sequences.  The assumption is that an intrusion results in different event patterns at the 

sensor level that are “matched” by one of the non-self sirens. 

 

3.3.2.3.1 Negative Selection 

Negative Selection in an AIS is intended to mimic the biological process by which 

antibodies produced by an organism are screened.  Essentially, an antibody is exposed to 

a selection of normal components of the organism.  If an antibody binds to one of these 

components, it is discarded.  Only the antibodies that do not “attack self” are allowed to 

be deployed as part of the immune system.  Similar methods are used in AISs, the goal 

being to create a set composed of individuals that will respond to certain anomalies, 

while yielding a low false positive rate.  For this system, some method must be devised to 

ensure no self-matching antibodies are found in the final set.  
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3.3.2.3.2 Affinity Maturation  

Affinity maturation is an optional stage in this system because there are no demonstrably 

appropriate ways of maximizing the “usefulness” of this type of antibody.  The use of 

“wildcards” in the chromosome, a common technique, would be useless with regard to 

most of the terminals.  For example, an antibody representing “Some unspecified event 

occurs within 1 event of the pointer” would always alert, no matter what logs were used.  

The operations likewise cannot be generalized; what meaning has the antibody “A some-

logical-operation A?”  It cannot be evaluated.  The only obvious way to generalize these 

antibodies is by varying the “within i” integer values.  Even this method is not as simple 

as it may seem.  An antibody with a low i value may be very specific (“e happens within 

1 event of pointer”) or very general (“e does not happen within 1 event of pointer”).  

Multiple logic operators may change or eliminate the effect of a single relationship 

operator; there is no consistency.  Since there is no way to measure the volume of the 

antibodies, the only logical compromise is to create two copies and increment one and 

decrement the other until they impinge on self or exceed the range of the set I.  The 

drawbacks of generalization may actually outweigh the benefits.  One of the objectives of 

this system is to attempt to locate the point in the log at which intrusion occurs; an 

antibody that states, “An anomaly occurs somewhere in the last half of the log” is less 

useful in this regard than one that states, “An anomaly occurs here.”  It may be more 

beneficial to avoid generality and aim for a large quantity of antibodies.  
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3.3.2.4 Quasi-GP Engine  

This section briefly discusses the application of GP techniques in this research, 

and how they differ from traditional GP.   

Traditional generational GP uses recombination and point mutation operators to 

create generations of program chromosomes.  The individuals in each generation are 

evaluated using a fitness function, and a selection process is applied to determine which 

will reproduce.  If the problem is solvable, the fitness function and selection mechanism 

are designed properly, the system is run for sufficient time, it is probable that a satisficing 

solution can be found.  Generally a single solution is sufficient, and convergence plays a 

large role in the speed with which a solution is found. 

In this research, by contrast, the mutation operators, fitness function, and selection 

mechanism all exist, but they are applied on consecutive generations not to evolve a 

single satisficing solution, but to evolve many solutions.  Once a “solution” is found, it is 

added to the set of antibodies and replaced with a new chromosome.  As a result, the 

engine faces a somewhat Sisyphean task; just as solutions are achieved, they are removed 

from the genetic pool.  It is important to note the constant influx of new genetic material 

that frustrates the process of convergence.  This is beneficial for our purposes as 

excessive convergence is not desirable.    

Recombination/Crossover 

To ensure that there are no type issues – for example, feeding a function a logical 

evaluation when it is expecting an integer – only branches where the first nodes are of 

equivalent types will be swappable.   
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Point Mutations  

Point mutations include replacing an event with another from set E, replacing an integer 

with another from set I, and replacing operators with similar types (i.e. AND ⇔ OR). 

Fitness Function 

A fitness functions is required for the training phase.  Specific low level design and 

implementation is discussed in Chapter 4. 

 

Deployment 

Deployment involves running the sirens on a set of logs representing a combination of 

known self and known attack logs and noting the results for human analyst response. 

Feedback loop 

 The feedback subsystem should work by adding or removing antibodies as indicated by 

analyst response.  The possible cases are as follows: 

?  Both self and attack cases, log is properly classified: No changes are necessary.   

?  Self, classified as attack (False Positive): The antibody is removed from the database 

and the log is added to the set of training cases. 

?  Attack, classified as self (False Negative): An antibody is generated that can 

differentiate between the training set and the test case.  It is added to the database. 

3.3.3 Design of Training and Test Sets 

The antibodies need to be tested using a variety of attacks that represent common 

exploits.  These attacks can be designed or simulated, as long as they represent a variety 
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of sizes and complexity over a range of relevant attacks (e.g. buffer overflows, race 

conditions).  To generate the training sets, the events of an application are represented as 

a regular expression.  A set of words produced from this expression becomes the training 

set. 

It is important to note that this technique is used only for research purposes to 

demonstrate some of the capabilities and limitations of the system.  If it was known a 

priori that an application could be represented by a particular regular expression, and that 

any word not produced by the expression is an intrusion/anomaly, we could save 

ourselves a lot of effort by just looking at a test log and testing the “word.”  There are 

three reasons these assumptions cannot be made in the real world: 

1. It cannot generally be determined (without extensive human analysis) what 

expression would actually represent the set of desirable paths; extensive human 

analysis is to be avoided. 

2. Alternatively, a full representation of the source code might actually include 

“anomalies;” for example, a branch that is only used in case of massive error would 

not normally be executed, but the analyst might want to be informed in the case that 

event occurred. 

3. Even if an appropriate expression was able to be determined, it is not necessarily 

exclusive of anomalies.  An anomaly might not be detectable; i.e., a modification to a 

word might yield another word produced by the same expression.  Such cases are  

possible sources of false negatives using this method. 

For these tests, the execution paths are represented as follows: 
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- Each command is a unique event 

- Conditionals:  

The situation 
 

e1; 
if(condition) 
 e2; 
e3; //etc 
 

is represented as: (e1 (Λ + e2) e3) 
 
Whereas 
 

e1; 
if(condition)  

e2;  
else  

e3; 
e4; //etc 

 
is represented as: (e1 (e2 + e3) e4) 

- Loops: for and while 

A for loop 
 

e1; 
for (i = 0; i<n; i++) 

e2; 
e3; //etc 

 
becomes (e1 (e2)n e3) 
 
while loops are represented similarly: 
 

e1; 
while(condition)  

e2;  
e3; //etc 

 
becomes (e1 (e2)* e3);  
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however, for the purposes of actual data set generation, the Kleene star is replaced with a 

more practical upper limit, such as “4.” 

Test sets  

The test cases of “unknown” logs require a set of logs that simulate self, and a set that 

that represents anomalous intrusions.  To generate these logs, words are produced from 

the regular expression used to generate the test set.  Some of these words are kept 

unmodified; they become the “self” test set.  Note that the words comprising this set must 

be tested against the training set to determine that there is no overlap between the sets; if 

there is, the offending test word must be replaced or eliminated.  

The “attack” subset of the test cases is created by modifying words (as described in 

Section 4.2.8) to simulate the effect of an intrusion. 

3.4 Summary 

This section outlined the methodology for the high- level design of a hybrid form 

of AIS that acts as an application-based, anomaly-detecting IDS.  The goal of this system 

is to use a number of event sequence logs based on execution path markers and analyze 

their order to find patterns that describe non-self states.  These patterns are incorporated 

into antibodies used by an AIS in an attempt to do sequential event analysis of potential 

intrusions.   
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4. Low-Level Design and Implementation 
 

4.1 Introduction 

This chapter covers design issues and implementation details to accomplish the 

research objectives covered in Chapter 3.   

 

4.2 Implementation/Problem Solving 

This section discusses specific implementation details and problem solutions. 

Choice of programming language, GP terminals used, chromosome generation, and 

different phases of the AIS and GP subsystems are discussed.  Design of synthetic data 

sets and a data extraction method are also discussed. 

 

4.2.1 Implementation Details 

The system was implemented in C++, a commonly used object-oriented language.  C++ 

was chosen over Java due to speed issues with the Java Virtual Machine.  While Java is 

often preferred due to its portability, this system uses logs, rendering the problem moot.   

  

4.2.2 GP Terminals  

This section discusses the implementation of terminals (operators and operands) 

deemed necessary for this research.   
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It was established in Chapter 3 that the sequencing operators happens-within, 

happens-within-reset, next, and previous, combined with the logical operators AND, OR, 

and NOT appear to be sufficient to characterize truncation, succession, multiple 

orderings, removal, replacement, repetition, and interlacing of sequences.  All operators 

were implemented with the exception of previous, which was only required to enable the 

characterization of interlaced sequences.  A review of attacks indicated that an operator 

that could perform identification of interlaced sequences would be superfluous; no 

attacks within the scope of the research would require it to identify them.  

 

The terminals were implemented as follows: 

Operands 

E (set of events): integers in the range [1,n], where n is the number of “sensors” 

I (distance between events): integers in the range [0, (size of largest log in training set)-1] 

 

Functions  

All functions were implemented using post-fix notation for to facilitate stack-based 

evaluation. 

Event Relationship Operators  
e happens-within i: 
Arity:   binary 
Represented as:  e i happens-within  
Returns:  integer: 1 if TRUE, 0 if FALSE 
  
e happens-within-reset i:  
Arity:   binary 
Represented as:  e i happens-within-reset  
Returns:  integer: 1 if TRUE, 0 if FALSE 
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e next 
Arity:   unary 
Represented as:  e next 
Returns:  integer: 1 if TRUE, 0 if FALSE 
 
Logical Operators  
A1 AND A2 
Arity:   binary 
Represented as:  A1 A2 AND  
Returns:  int: 1 if A1 = 1 and A2 = 1, 0 otherwise  
 
A1 OR A2 
Arity:   binary 
Represented as:  A1 A2 OR 
Returns:  int: 1 if A1 = 1 or A2 = 1, 0 otherwise 
 
NOT A 
Arity:   unary 
Represented as:  A NOT 
Returns:  int: 1 if A = 0, 0 if A = 1 

 

4.2.3 Chromosome Generation 

As noted in Chapter 3, producing the sirens is a matter of finding an appropriate CFG.  

Based on the discussion of necessary operators, the generation rules can be defined as 

follows: 

Intermediate Symbols: 

L: placeholder for a logical evaluation (AND, OR, NOT) 

B: placeholder for a relationship evaluation  

A: placeholder for a logical or relationship evaluation 
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Production Rules: 

S ?  L 
S ?  B  
L ?  A A and  
L ?  A A or    
L ?  A not    
A ?  L   
A ?  B 
B ?  E I occurs-within   
B ?  E I occurs-within-reset 
 

A symbol has equal probability of having any of the relevant rules applied; for example, 

‘L’ has a 33.3% probability of becoming ‘A A and,’ ‘A A or,’ or ‘A not.’ 

All chromosomes were implemented as linear doubly- linked lists of nodes (represented 

as structs) to allow for easier expansion of the terminal set, should functions of different 

arity ever need to be added to the system.   

 

4.2.4 Training 

The goal of the training stage is to develop a set of sirens that represent non-self.   

Negative Selection 

Negative Selection is accomplished by only adding to the Antibody Database sirens 

which did not match self data and which were not already present in the Database.  

Matches are determined by evaluating the sirens against each element of the test data set 

and OR-ing the results, so that if any one of the test sets matches it, it does not become an 

antibody.  If the siren is a non-match for all training cases, the Database is then searched 

for a matching chromosome; if none is found, the siren becomes an antibody.  This 

method ensures the set is composed of unique individuals.  
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Affinity Maturation  

Affinity maturation using the methods described in Chapter 3 was originally 

implemented, but pilot tests revealed an unacceptable degree of nicheing occurring as a 

result.  Essentially, the individuals from the first several generations disproportionably 

contributed to the Antibody Database by flooding it with multiple slightly altered copies 

of themselves, lowering the diversity of the Antibody population and lowering the rate of 

anomaly detection.  This nicheing also served to make analysis more difficult in the cases 

when anomalies were detected; many antibodies were subsumed by others almost 

identical to themselves, resulting in the extraction of more redundant information. 

4.2.5 Quasi-GP Engine  

A generational design was used.  This means that during each iteration step (generation), 

all the individuals in the current population are evaluated and given a fitness value.  

 

4.2.5.1 Selection 

A standard binary tournament selection with replacement was used [Banz98].  Two 

individuals are selected from the population and the individual with the highest fitness is 

allowed to survive to the next generation.  Neither is removed from the population pool.  

This process is repeated until the required number have been selected. 
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4.2.5.2 Crossover 

Crossover was done by selecting a point from 0 to “size of chromosome” and swapping 

the branch beginning at that point with a similarly-chosen branch from another siren.  To 

maintain operand type consistency, a context preserving method was used that insured 

crossover only occurred if the selected nodes were of exchangeable type [Banz98].  For 

example, a Boolean expression could not be replaced with an Integer type. 

 

4.2.5.3 Point Mutations  

Point mutation was accomplished using the following mutators, as appropriate, with 

probability pm: 

If chosen node is of type  

E: replace with randomly chosen sensor 

I: replace with randomly chosen integer 

Logical, binary (AND/OR):  

Replace with another, or negate by inserting NOT after it 

Logical, unary (NOT):  

Remove the node; equivalent to negation 

Relationship, binary (happens-within(-reset)):  

Replace with another, or negate  

Relationship, unary (next):  

Negate 
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4.2.5.4 Fitness Function 

Training phase: A simple yet serviceable fitness function was used during the training 

process.  The initial “score” of each siren was set to 0.  The chromosome of a siren was 

evaluated on all n elements of the training set.  For each training log, if the evaluation 

was equivalent to 1, the siren was considered to have “matched” the log, and the value 1 

was added to the score.  After the siren had been evaluated for all members of the training 

set, the score was interpreted as an inverse measure of fitness; i.e., the sirens with the 

lowest scores matched the least number of training sets and were therefore of the highest 

fitness.  Attempts were made to further differentiate among sirens’ fitness based on the 

size of their chromosomes; however, pilot tests indicated this idea was not appropriate, as 

it drove the sizes down so that there was not sufficient variation to fill the Antibody 

Database in a reasonable time.  

4.2.6 Deployment 

Deployment was simulated by running the siren antibodies on a set of logs representing a 

combination of self and attack logs.  The accurate classifications were known to the tester 

a priori.  Execution time and classification results resulting from deployment are noted in 

Chapter 5. 

4.2.7 Feedback Loop 

Although the feedback subsystem would be a necessity if this system were to be 

deployed in the real world, the full feedback system was not implemented. The reason for 

this decision is that for research purposes, it is desirable that all elements of the data set 

experience the same environment; i.e., the same set of antibodies.  If the full feedback 
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loop is in place, this cannot be accomplished, as feedback from a false classification may 

affect the classification of subsequent logs.  However, during testing, the feedback loop 

was partially implemented so as to be able to test it in a controlled manner.  (Chapter 5 

presents the details.) 

 

False Negatives:  In this case, no antibody alerts on a known anomaly.  A number (g) of 

further generations of antibodies are evolved.  If within g generations, an antibody is 

generated that can differentiate between the training set and the test case, then it is added 

to the Antibody Database.  The number of allowable generations is limited because pilot 

tests indicated it could take an unreasonable amount of time to evolve an antibody that 

satisfies these conditions.  Moreover, it may be impossible to differentiate between an 

“anomaly” log and a “normal” log in real life – for example, if the anomaly did not create 

a measured change in the execution path.  With this system, training and test cases are 

designed so that this is not the case.  

 

False Positives:  In this case, one or more antibodies alerts on a known normal log.  The 

log is added to the training set, and the alerting antibodies are removed from the 

Database.   

 

4.2.8 Design of Training and Test Sets 

All logs were represented as text files containing an un- indexed, one dimensional array of 

event data.  Synthetic training and test sets were built in the following manner.  Two 
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programs are written to assist in the development of data sets.  The first takes a regular 

expression (in an unconventional form) and converts it to a functional representation.  

The standard Kleene star operation is defined as creating the largest set that can be made 

by concatenating zero or more strings from a set of strings.  For the purposes of this 

research, a “limited Kleene star” operation is defined as creating the set of strings that can 

be made by concatenating one to n.  This operation is represented by “kstar(),”  

disjunction is represented by or(), and conjunction is represented by “cat().”  For 

example, the regular expression  

((a1+a2+a3+a4) (a9 (a10+a11))*) is transformed to  

cat(or(a1,or(a2, or(a3,a4))),kstar(cat(a9,or(a10, a11))))) 

The second program fully enumerates all words producible by this expression.  Each 

word represents a normal log created by traversing a particular execution path.  For this 

example, with n=2, the words in the language are: 

a1 a9 a10 
a1 a9 a11 
a1 a9 a10 a9 a10 
a1 a9 a10 a9 a11 
a1 a9 a11 a9 a10 
a1 a9 a11 a9 a11 
a2 a9 a10 
a2 a9 a11 
a2 a9 a10 a9 a10 
a2 a9 a10 a9 a11 
a2 a9 a11 a9 a10 
a2 a9 a11 a9 a11 
…etc 
 
From this set, training and test sets are produced.  The second largest power of two less 

than the number of words produced becomes the test set size (eight, in this case).  The 
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test set is built by selecting random strings such that there are no duplicates in the test set.  

Training sets of cardinality two through “test size,” in multiples of two, are produced by 

selecting random strings such that there are no duplicates in the training set and the 

training and test sets do not intersect.  This process would produce three training sets with 

cardinality of two, four, and eight.  The test set is then modified so that half the strings 

represent anomalies, to simulate the effect of an intrusion.  Modification is done by 

applying truncation, removal, insertion, and replacement operators, each to one quarter of 

the anomalous test set. 

Truncation: A random number of events (between one half and one quarter of the log 

size) are removed from the end of the log.  This modification represents attacks that cause 

a break in execution, such as many stack-based buffer overflows. 

Removal: A random number of events (between one half and one quarter of the log size) 

are removed from some portion of the log.  This modification represents an attack that 

causes the application to take an unusual path that skips normally-seen events. 

Insertion: A random number of placeholder events that will be unrecognizable to the 

evaluation portion of the system (between one half and one quarter of the log size) are 

added to the log.  This modification represents an attack that causes the application to 

take an unusual path that encounters normally-unseen events. 

Replacement : A random number of events (between one half and one quarter of the log 

size) are replaced with a number of placeholders (not necessarily of equal cardinality to 

the set of events replaced) that will be unrecognizable to the evaluation portion of the 

system.  This modification can represent an attack that causes the application to take an 



 

56 

unusual path; in an abstract sense it can also represent a quantitative change in some 

other monitored event type, such as time delay between commands.       

Specific training and test sets are described in Chapter 5. 

 

4.3 Difference Analysis 

This stage was added to facilitate human analysis of anomalies by creating what is 

referred to as “Difference Essences,” or DEs.  DEs represent only the parts of an antibody 

chromosome that specifically match a nonself log and do not match any of the self logs.  

DE sets are extracted from altering antibodies for each test log.  Basic DEs were isolated 

by using DeMorgan’s Laws and splitting chromosomes using the following algorithm: 

Use DeMorgan’s Laws to simplify chromosomes by moving nots as far down the tree as 

possible: 

((A B or) not) ?  ((A not) (B not) and) 

((A B and) not) ?  ((A not) (B not) or) 

Remove all negated nots: 

((A not) not) ?  A 

Where the terminal function is an or or and, both branches are individually tested and 

added to the DE set if they are not self-matches. 

Analyze Difference pseudocode: 

start processing from the end of the chromosome (the rightmost operator)  

if operator = = (not || happens-within || happens-within-reset) 
 add branch to Difference Essence set 
else if operator = = and 
{ 
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if(!rightbranch matches self) 
 { 
  Analyze Difference(rightbranch); 
 } 
 
 if(!leftbranch matches self) 
 { 
  Analyze Difference(leftbranch); 
 }    
} 
else if operator = = OR 
{ 
 if((!rightbranch matches self)&&(rightbranch matches nonself)) 
  Analyze Difference (rightbranch); 
 
 if((!leftbranch matches self())&&(leftbranch matches nonself)) 
  Analyze Difference(leftbranch);     
} 
 

This method breaks out all DEs, which can be combined using conjunction to produce a 

description of the difference between the anomaly and “self.”  It is important to note that 

the DEs themselves can have their pointers set to various starting points within the log – 

in other words, 3 happens-within 2 (of index position 0) is different than 3 happens-

within 2 (of index position 2).   

 This process was successfully implemented.  Further refinements are necessary; it 

is possible to have several unique DEs that describe overlapping conditions:  

3 next (after pointer [0]) includes 3 next (after pointer [2]) 

If the first is true, the second must also be true and vice versa.  The superfluous 

statements need to be removed. 
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4.4 Summary 

This chapter discussed in detail the low-level design and implementation of the system.  

In addition, issues that surfaced throughout the development process were explained, and 

appropriate solutions were presented.   
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5. Test Cases and Results 

5.1 Introduction 

This chapter reviews relevant research objectives, experiments, test cases, and 

evaluation results.  Analysis of test results indicate that the system is successful in 

reaching its objectives.  Further research and exploration is necessary to more thoroughly 

verify concepts brought about by this research.  A set of future work recommendations is 

outlined in Chapter 6. 

5.2 Design of Experiments 

These experiments are needed to determine whethe r the implemented system can 

successfully classify event logs as “normal” or “anomalous.”  They assist in determining 

to what extent the research is successful in achieving Objective III: Determine an 

appropriate method of classifying these relationships as “normal” or “anomalous.” 

Testing occurred in several phases.  Initial pilot tests were made to determine to 

what levels certain factors should be set.  The results of these tests are discussed 

qualitatively in the Factors section.  These levels were maintained throughout testing to 

provide continuity for all tests and to limit the number of experiments. 

After these levels were set, experiments were run to determine the effectiveness 

of the system as determined by levels of false positive and false negatives.  These tests 

were run with and without feedback to determine if feedback provided a benefit that 

outweighed its drawbacks.  These experiments were run on a small set of different 

“simulated applications” represented by regular expressions.  
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5.2.1 System Boundaries 

The System Under Test (SUT) is the IDS system.  The Component Under Test 

(CUT) is the amalgam composed of the antibody generator and the detection module 

within the IDS responsible for identifying anomalies based on the logs.  This CUT is 

being evaluated for effectiveness of detection.  The system accepts an application log as 

input and outputs a classification – potential attack or normal behavior – based on the 

alerting of antibodies.   

 

5.2.2 System Services 

The service the system provides is the classification of a set of “logs” by the IDS.  

The possible outcomes are values representing the number of unique sirens that alert on a 

particular test case.  These values can be interpreted as “Self” and “Non-self” 

classifications associated with a degree of sample frequency.  These outcomes comprise 

all possibilities. 

 

5.2.3 Performance Metrics 

For the IDS, effectiveness describes the ability of the system to detect anomalous 

occurrences.  For example, if a test set of 100 logs contained 20 attacks, and the system 

successfully identified 10 attacks while misidentifying 5 of the “self” test cases, the 

following statements could be made: 

- 10/20 attacks were detected; the false negative rate is 50% for this test set 
- 5/80 false positives occurred; the false positive rate is 6.25% for this test set 
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Efficiency is the performance, quantitative and qualitative, of the analysis 

program.  It can be measured as raw time (seconds to completion), or calculating ratios of 

time as factors are manipulated.  Efficiency is measured for this system to assess the 

effect of increased number of training cases in a training set on the time required to 

produce a set number of antibodies. 

 

5.2.4 System Parameters  

System parameters include the Central Processing Unit (CPU) model and speed, 

amount of memory, operating system.  The following hardware/software specifications 

are used to evaluate the system:  Pentium III, 1.7 GHz with 512 MB RAM running 

Microsoft Windows Me.  All code is written predominantly in C++. 

5.2.5 Workload 

The workload submitted to the system consists of two parts: a training set and a 

test set.  The training set represents the results of sequences of “common” appropriate 

logs produced by the application.  Once the system is exposed to a set of “self” training 

data, the test set is introduced.  The test set is similar to the training set, but is modified to 

represent requests that exploit vulnerabilities in the application as described in Chapter 4.  

The IDS processes the sets and reports the number of antibodies that alert.  
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5.2.6 Factors  

The factors to consider for designing these experiments can be decomposed into 

two categories: those that characterize the data, and those that affect the operation of the 

IDS itself. 

The number of sensors used to create the data sets has a major impact on the 

performance of the IDS, as each additional sensor increases the search space.  Number of 

sensors is varied: low, medium, and high.  A low number represents an application with 

only a few sensors placed at strategic points, the locations of which are determined via 

path profiling or another instrumentation technique.  A high number, by contrast, 

represents a system with sensors placed after every line of code.   For the purposes of 

scoping the assumption is made that the applications represented in these experiments are 

of relatively small size and can be adequately instrumented using 16 sensors.  This 

assumption is reasonable; many commonly exploited applications are quite small (10-30 

commands) and have relatively few possible execution paths.  Because it is important to 

test the ability of the IDS to characterize complex programs, all regular expressions used 

to generate training and test cases are designed to produce 28-29 execution paths. 

The IDS factors include population size during antibody production, termination 

condition for the antibody production stage, and the frequency of recombination and 

point mutation.  Pilot tests were completed to determine settings for these factors based 

on results when run on a representative selection of training sets using 16 sensors.  Levels 

were tested at factors of two.   
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Population size was set to 512 sirens per generation.  This size was found to be 

both consistent and stable in terms of the number of antibodies produced from each 

generation.  With a significantly smaller population size, the number of antibodies 

produced tended to dwindle rather quickly, resulting in a rate of production that was 

lower and of no apparent better quality.  

The maximum size for a chromosome was limited to 64 nodes.  With significantly 

fewer nodes, the system again produced antibodies at a very slow rate, since there were 

many fewer possible sirens in the search space.  With significantly more nodes, 

evaluation of the individuals in each generation became unmanageable after several 

generations, and the system often crashed from memory exhaustion (heap overflows).   

A higher percentage of false negatives was correlated with a smaller Antibody 

Database; however, if the system was set to produce significantly more than 8192, 

production took an unacceptably long time, in some cases running days without 

terminating.  Data from a simple example using a training size of 16 can be seen in Table 

1.  

A goal of 4096 antibodies was determined to be an acceptable termination 

criterion.  With higher cardinality training sets, the termination criterion took 

disproportionally longer to reach; thus, another termination criterion was added to limit 

the number of generations to 1024.  With mutation in standard GP, where convergence is 

important, the emphasis is usually on recombination; point mutations are usually kept 

relatively low, limiting the amount of new genetic material in the system.  In this system, 

the ideal was to have just enough convergence to allow solutions (antibodies) to be 
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reliably produced, but to represent as diverse a population as possible within the solution 

criteria.  For this reason, both recombination and point mutation are performed on every 

individual at each generation.   

 

Table 1. Minutes to Develop Antibodies 

Number of Antibodies Minutes to produce 
0 0.02 
1 0.02 
2 0.02 
4 0.02 
8 0.02 

16 0.02 
32 0.02 
64 0.02 

128 0.03 
256 0.04 
512 0.07 

1024 0.17 
2048 0.84 
4096 5.49 
7280 (approximately) 570 

 

Further experiments were run using a range of training set sizes, since training is 

both a major contributor to the effectiveness of an AIS and very time-consuming.  Due to 

the limitation on words in the regular language, all test sets consisted of 128 logs, half 

normal and half modified.   

For efficiency of the IDS, direct measurement was used by comparing execution 

times.  It was found that if all other factors were kept consistent, a doubling of training 

set size roughly corresponded to a doubling in execution time; in other words, growth 

was apparently linear regarding this factor.  A single training set size, 16, was chosen as a 
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result of these tests.  This value was chosen because for several “applications,” it 

consistently produced results where an acceptable separation between normal and 

anomalous data could be found (i.e with low false positive and false negative rate) in 

relatively little time.  

   

5.2.7  Experimental Design 

Experiments were designed to demonstrate the functionality of the program over a 

range of input types and to illustrate the effect of feedback.  Six “application”-regular 

expressions were developed (Table 2).   

Table 2.  Regular Expressions with Number of Strings Produced 

Number Regular Expression Strings Produced 
1 ((a9+a10+a11) (a1 (a2+a3+a4))* a16) 360 
2 (a1 a2 (a9 (a10+a11+a12))* (a13 a15)* a16) 480 
3 (a1 (a2+a3+(a4+a5+a6+a7)*) a16) 342 
4 (a1 a2 a6 ((a9+a10+a11) a12)* a13 (a15 a14)* a16) 480 
5 (a1 (a2+a3+a11) a4 (a5+a6)* a9 (a7)* a16) 360 
6 (a2 a6 a8 (a10 (a12 a14)*)* a16) 340 

 

 

For each of the six regular expressions, ten test sets of 128 logs were developed.  These 

logs were divided in two; one set became a “tuning” test set and the other became the 

“experimental” test set.   
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Experiments were done for the following conditions: 

No Feedback: 
 - One training set of 16 self logs was used to train the system. 
 - One set of 128 test logs was run through the system, and results (detection rate 

and FP rate) were measured. 
- This experiment was run for each of the 10 test sets. 

 
Limited Feedback: 
 - One training set of 16 self logs was used to train the system. 

- One set of 64 test logs was run through the system while providing feedback on 
False Positive and False Negative hits.  In the case of False Negatives, the 
generations allowed to attempt to evolve a matching antibody were limited to 100.  
Results were not measured. 

 - The second set of 64 test logs was run, and results were measured. 
- This experiment was run for each of the 10 test sets. 

5.4 Results and Analysis 

As noted, these experiments were performed for six different regular expressions.  

Table 3 displays results in terms of mean number of alerts (with standard deviation in 

parenthesis) without feedback. 

Table 3. Mean Number of Alerts (Standard Deviation) without Feedback 

  1 2 3 4 5 6
Truncation 53 (17) 166 (87) 72 (50) 373 (151) 213 (125) 321 (146) 
Removal 19 (11) 43 (49) 26 (23) 51 (42) 47 (43) 21 (31) 
Insertion 15 (15) 74 (110) 90 (129) 104 (110) 128 (130) 98 (168) 
Replacement 10 (11) 54 (84) 46 (68) 85 (101) 86 (84) 74 (140) 
All Anomalies 24 (22) 84 (98) 58 (81) 153 (168) 118 (119) 128 (175) 
All Normal 5 (6) 4 (18) 13 (33) 5 (13) 13 (35) 2 (17) 
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Table 4 displays results in terms of mean number of alerts (with standard deviation in 

parenthesis) with feedback. 

Table 4. Mean Number of Alerts (Standard Deviation) with Feedback 

  2F 3F 4F 5F 6F 7F 
Truncation 53 (20) 171 (71) 59 (29) 308 (127) 194 (92) 306 (139) 
Removal 14 (10) 29 (24) 19 (13) 44 (36) 38 (31) 19 (28) 
Insertion 8 (11) 60 (105) 55 (91) 73 (103) 131 (116) 103 (182) 
Replacement 6 (13) 46 (79) 34 (46) 83(96) 79 (70) 85 (156) 
All Anomalies 20 (24) 77 (94) 42 (55) 127 (143) 111 (101) 128 (176) 
All Normal 0 (1) 2 (16) 2 (10) 2 (9) 4 (16) 0 (2) 

 

 

Since results were similar, a single representative case is discussed.  All logs in 

this case came from Expression 2: (a1 a2 (a9 (a10+a11+a12))* (a13 a15)* a16), which 

produced 480 words when fully enumerated using n=4.   

Figure 2 shows the distribution of the number of alerts for both normal and 

anomalous data.  It can be seen that if the number of alerts after which a log is classified 

as self is set quite low, the majority of the normal and anomalous logs in the test sets can 

be classified correctly.  

 Figure 3 illustrates the distribution of alerts for the different modifications.  It can 

be seen that there is very little overlap between the number of antibodies that alert on 

normal logs and the number that alert on truncated logs.  This trend appears to hold for 

the other regular expressions as well.  The other modifications are less easily separable 

from normal data. 
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Figure 2. Number of Alerts produced for Normal and Anomalous Logs, No Feedback 

 

 

Figure 3. Number of Alerts produced for Normal and Differently Modified Logs, No Feedback 
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Figures 4 and 5 display the means with 90 percent confidence intervals for the 

different anomaly types, all types combined, and the unmodified strings.  It can be seen 

that only the Truncation modification can be statistically distinguished from the normal 

data at this degree of significance in both figures.  In Figure 5, the feedback appears to 

have enabled the Removal modification to also be distinguishable from normal; however, 

an examination of the data for the other regular expressions reveals that this change does 

not represent a consistent trend.  Overall, there is no significant benefit to the use of 

partial feedback. 
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Figure 4. Means with 90% Confi dence Intervals (No Feedback) 

 



 

70 

0
50

100
150
200
250
300

Tru
nca

tion

Re
mova

l

Ins
ert

ion

Rep
lac

em
en

t

All
 An

om
alie

s

All 
Norm

al

N
u

m
b

er
 o

f 
A

le
rt

s

 

Figure 5. Means with 90% Confidence Intervals (with Feedback) 

Figure 6 was produced by classifying each log according to whether the number of alerts 

it received was greater than the value on the x-axis, which represents a critical decision 

point (CDP).   It can be seen that classification can be performed by setting the CDP to 

the desired value and measuring the false positive and false negative percentages 

achievable as a result.   

If FPs and FNs are of equivalent “badness,” then the best CDP for this application 

with these factors is approximately 3 alerts; at that point, the percentage of FPs is 

equivalent to the percentage of FNs – approximately 20%.  This can be seen in Figure 7. 
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Figure 6. Control Results: Percentage vs. CDP for FP and FN 
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Figure 7. Control Results – Detail 
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Again, it cannot be shown that the addition of feedback makes the classification better in 

any general sense (Figure 8).  The values are, for the most part, basically identical to 

those from the no-feedback tests, shifted by a few alerts to the left (Figure 9).       
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Figure 8.  Limited Feedback Results: Percentage vs. CDP for FP and FN 
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Figure 9.  Percentage vs. CDP for FP and FN with (F) and without (NF) Feedback 
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5.3 Summary 

This chapter discussed test cases as they related to the classification capability of 

the system.  Test results are discussed as they related to the testing objectives.  In these 

experiments, use of a partial feedback system did not appear to increase effectiveness of 

classification.  Certain modifications are easier to detect than others - the easiest was the 

truncation modification, the most difficult is the replacement modification.  Graphical 

analysis is used to determine detection and false positive rates associated with various 

Critical Decision Point values representing the number of alerts above which a log is 

classified as an anomaly. 
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6. Conclusions and Recommendations 

 
6.1 Introduction 
 

This chapter summarizes the research with respect to the objectives established in 

Chapter 1.  The research impact and potential utility of the system are discussed.  Finally, 

recommendations for future work are outlined. 

6.2 Research Impact 
 
Research impact can be described in terms of how the system met the objectives stated in 

Chapter 1. 

Objective I: Identify and implement any operators necessary to describe temporal 

relationships among relevant events  

The relationship operators implemented were adequate to characterize and identify a 

significant percentage of the synthetic anomalies, especially truncations.  In retrospect, a 

set of additional operators might have been useful to match different types of patterns.  

They are discussed in Section 6.3. 

 

Objective II: Determine an appropriate method of producing descriptors for 

event sequences of varying complexity 

The method of using GP to produced “relationships” linked with logical operators was a 

success.  Large quantities of descriptors were producible in reasonable time. 
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Objective III: Determine an appropriate method of classifying these relationships 

as “normal” or “anomalous”  

Use of the AIS paradigm was shown to be practical for isolating non-self detecting 

antibody descriptors.  The combination of this technique with feedback and construction 

of the CDP curves allowed a “decision value” to be determined for a variety of different 

simulated intrusions. 

 

Objective IV: Determine a method to extract and consolidate data that may assist 

human analysts in locating the point at which an anomaly occurs 

Extraction of the “Difference Essences” was a simple way of locating the point(s) at 

which the execution path of an application becomes anomalous.  Because analysis was 

not limited to a fixed-size window, a plethora of information regarding the execution path 

as a whole could be compiled for post-mortem analysis.  This information could assist 

not only in the identification of the attack used, but in the patching of security faults.  

Testing needs to be done to determine the utility of the collected information to an 

analyst.  Further refinements, including condensing relationships and developing a 

method of visually representing these differences, would be of use.   

 

6.3 Recommendations for Future Work 

This research only dealt with a subset of the components that comprise the AIS 

model.  It needs to be brought more completely within the model and further validated.  

Necessary alterations include running the system as truly deployed, using full feedback 
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(not just “tuning” feedback) and testing on a representative, more realistic set of self and 

intrusion data.  Such testing might involve setting up and instrumenting a sendmail server 

or other complex application and gathering several days worth of normal and intrusion 

data.  An addition could easily be made to this system to allow it to behave both as a 

signature detector and an anomaly detector, as follows: the fully deployed system would 

begin with a full Antibody Database and an empty Signature Database.  As antibodies 

detect anomalies, they could be moved or copied to the Signature Database and replaced 

with new antibodies.   

There are many possible more dramatic extensions to this research that could 

improve its utility.  Several examples follow: 

Real-time Analysis 

Real-time analysis has the benefit of use as part of an Intrusion Response System 

– a system that does not merely passively detect intrusions but actively attempts to 

prevent them from occurring.  In this case, once a number of antibodies (greater than the 

CDP) alert, the process could be slowed or halted while a human responder is summoned 

to examine the situation.  Such a method would be similar to the process homeostasis  

used by Somayji and Forrest [Soma00].  Real-time analysis would allow certain 

intrusions to be thwarted, increasing system security.  At the same time, real-time 

analysis still carries with it the problems discussed in Section 3.2.1; i.e., possibility of the 

attacker becoming aware of the IDS, susceptibility to DoS, etc.  
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Dynamic Instrumentation 

Dynamic instrumentation addresses the more common scenario wherein one is 

faced with developing a defensive system for a host running an application that does not 

have publicly available source code.  Dynamic instrumentation techniques allow code to 

be inserted directly into the compiled executable.  These methods are relatively easy to 

use if the developer has a solid grasp of assembly languages.  One drawback to this 

method is that such insertion may actually create unexpected race conditions.  

Furthermore, this method is by nature OS specific, which means that there is no single 

portable system that can be widely deployed if the network is heterogeneous. 

Extension of Function Set, Features Monitored 

There is still a wealth of application-related data unexamined by this system; it 

would be sensible to determine whether monitoring other features (resource load, time 

delay between command execution, system calls) might be effective.  For example, 

temporal functions, such as a “happens-within [t time steps]” might assist in 

identification of attacks that do not affect the execution path, but do affect the rate of 

progression through the path, such as some heap-based buffer overflows.  

Functions that evaluate relationship between two events may also serve some 

purpose in this system.  They could be used to describe sequences in a different way – 

instead of basing the evaluation of a relationship on the distance from a pointer, it could 

be based on distance from, for example, any event of a particular identifier.  It may be 

more relevant when an event occurs relative to a set of events of the same type than that it 

occurs within a certain number of events of a single event.  For example, the regular 
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expression (1 2* 3) can produce the log {1 2 3}.  In this case, it may be more useful to 

describe this log using the relationship like there-exists <event 3> after-any <events 2>, 

or something similar, instead of next <event 3> or <event 3> happens-within <6> of 

event[0] . 

 

 
6.4 Summary 

The techniques used in developing this system are shown to have utility in meeting 

the stated objectives.  These techniques show potential utility for application to real world 

data.  This work establishes a solid foundation for continued research in this area.  
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Appendix:  Sample Regular Expression, Fully Enumerated 
 
Expression 2: (a1 a2 (a9 (a10+a11+a12))* (a13 a15)* a16 
Number of Strings = 480 
 
1 2 9 10 13 15 16 
1 2 9 10 13 15 13 15 16 
1 2 9 10 13 15 13 15 13 15 16 
1 2 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 11 13 15 16 
1 2 9 11 13 15 13 15 16 
1 2 9 11 13 15 13 15 13 15 16 
1 2 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 12 13 15 16 
1 2 9 12 13 15 13 15 16 
1 2 9 12 13 15 13 15 13 15 16 
1 2 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 10 13 15 16 
1 2 9 10 9 10 13 15 13 15 16 
1 2 9 10 9 10 13 15 13 15 13 15 16 
1 2 9 10 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 11 13 15 16 
1 2 9 10 9 11 13 15 13 15 16 
1 2 9 10 9 11 13 15 13 15 13 15 16 
1 2 9 10 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 12 13 15 16 
1 2 9 10 9 12 13 15 13 15 16 
1 2 9 10 9 12 13 15 13 15 13 15 16 
1 2 9 10 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 11 9 10 13 15 16 
1 2 9 11 9 10 13 15 13 15 16 
1 2 9 11 9 10 13 15 13 15 13 15 16 
1 2 9 11 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 11 9 11 13 15 16 
1 2 9 11 9 11 13 15 13 15 16 
1 2 9 11 9 11 13 15 13 15 13 15 16 
1 2 9 11 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 11 9 12 13 15 16 
1 2 9 11 9 12 13 15 13 15 16 
1 2 9 11 9 12 13 15 13 15 13 15 16 
1 2 9 11 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 12 9 10 13 15 16 
1 2 9 12 9 10 13 15 13 15 16 
1 2 9 12 9 10 13 15 13 15 13 15 16 
1 2 9 12 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 12 9 11 13 15 16 
1 2 9 12 9 11 13 15 13 15 16 
1 2 9 12 9 11 13 15 13 15 13 15 16 
1 2 9 12 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 12 9 12 13 15 16 
1 2 9 12 9 12 13 15 13 15 16 
1 2 9 12 9 12 13 15 13 15 13 15 16 
1 2 9 12 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 10 13 15 16 
1 2 9 10 9 10 9 10 13 15 13 15 16 
1 2 9 10 9 10 9 10 13 15 13 15 13 15 16 

1 2 9 10 9 10 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 11 13 15 16 
1 2 9 10 9 10 9 11 13 15 13 15 16 
1 2 9 10 9 10 9 11 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 12 13 15 16 
1 2 9 10 9 10 9 12 13 15 13 15 16 
1 2 9 10 9 10 9 12 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 10 13 15 16 
1 2 9 10 9 11 9 10 13 15 13 15 16 
1 2 9 10 9 11 9 10 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 11 13 15 16 
1 2 9 10 9 11 9 11 13 15 13 15 16 
1 2 9 10 9 11 9 11 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 12 13 15 16 
1 2 9 10 9 11 9 12 13 15 13 15 16 
1 2 9 10 9 11 9 12 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 10 13 15 16 
1 2 9 10 9 12 9 10 13 15 13 15 16 
1 2 9 10 9 12 9 10 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 11 13 15 16 
1 2 9 10 9 12 9 11 13 15 13 15 16 
1 2 9 10 9 12 9 11 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 12 13 15 16 
1 2 9 10 9 12 9 12 13 15 13 15 16 
1 2 9 10 9 12 9 12 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 11 9 10 9 10 13 15 16 
1 2 9 11 9 10 9 10 13 15 13 15 16 
1 2 9 11 9 10 9 10 13 15 13 15 13 15 16 
1 2 9 11 9 10 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 11 9 10 9 11 13 15 16 
1 2 9 11 9 10 9 11 13 15 13 15 16 
1 2 9 11 9 10 9 11 13 15 13 15 13 15 16 
1 2 9 11 9 10 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 11 9 10 9 12 13 15 16 
1 2 9 11 9 10 9 12 13 15 13 15 16 
1 2 9 11 9 10 9 12 13 15 13 15 13 15 16 
1 2 9 11 9 10 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 11 9 11 9 10 13 15 16 
1 2 9 11 9 11 9 10 13 15 13 15 16 
1 2 9 11 9 11 9 10 13 15 13 15 13 15 16 
1 2 9 11 9 11 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 11 9 11 9 11 13 15 16 
1 2 9 11 9 11 9 11 13 15 13 15 16 
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1 2 9 11 9 11 9 11 13 15 13 15 13 15 16 
1 2 9 11 9 11 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 11 9 11 9 12 13 15 16 
1 2 9 11 9 11 9 12 13 15 13 15 16 
1 2 9 11 9 11 9 12 13 15 13 15 13 15 16 
1 2 9 11 9 11 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 11 9 12 9 10 13 15 16 
1 2 9 11 9 12 9 10 13 15 13 15 16 
1 2 9 11 9 12 9 10 13 15 13 15 13 15 16 
1 2 9 11 9 12 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 11 9 12 9 11 13 15 16 
1 2 9 11 9 12 9 11 13 15 13 15 16 
1 2 9 11 9 12 9 11 13 15 13 15 13 15 16 
1 2 9 11 9 12 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 11 9 12 9 12 13 15 16 
1 2 9 11 9 12 9 12 13 15 13 15 16 
1 2 9 11 9 12 9 12 13 15 13 15 13 15 16 
1 2 9 11 9 12 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 12 9 10 9 10 13 15 16 
1 2 9 12 9 10 9 10 13 15 13 15 16 
1 2 9 12 9 10 9 10 13 15 13 15 13 15 16 
1 2 9 12 9 10 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 12 9 10 9 11 13 15 16 
1 2 9 12 9 10 9 11 13 15 13 15 16 
1 2 9 12 9 10 9 11 13 15 13 15 13 15 16 
1 2 9 12 9 10 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 12 9 10 9 12 13 15 16 
1 2 9 12 9 10 9 12 13 15 13 15 16 
1 2 9 12 9 10 9 12 13 15 13 15 13 15 16 
1 2 9 12 9 10 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 12 9 11 9 10 13 15 16 
1 2 9 12 9 11 9 10 13 15 13 15 16 
1 2 9 12 9 11 9 10 13 15 13 15 13 15 16 
1 2 9 12 9 11 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 12 9 11 9 11 13 15 16 
1 2 9 12 9 11 9 11 13 15 13 15 16 
1 2 9 12 9 11 9 11 13 15 13 15 13 15 16 
1 2 9 12 9 11 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 12 9 11 9 12 13 15 16 
1 2 9 12 9 11 9 12 13 15 13 15 16 
1 2 9 12 9 11 9 12 13 15 13 15 13 15 16 
1 2 9 12 9 11 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 12 9 12 9 10 13 15 16 
1 2 9 12 9 12 9 10 13 15 13 15 16 
1 2 9 12 9 12 9 10 13 15 13 15 13 15 16 
1 2 9 12 9 12 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 12 9 12 9 11 13 15 16 
1 2 9 12 9 12 9 11 13 15 13 15 16 
1 2 9 12 9 12 9 11 13 15 13 15 13 15 16 
1 2 9 12 9 12 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 12 9 12 9 12 13 15 16 
1 2 9 12 9 12 9 12 13 15 13 15 16 
1 2 9 12 9 12 9 12 13 15 13 15 13 15 16 
1 2 9 12 9 12 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 10 9 10 13 15 16 
1 2 9 10 9 10 9 10 9 10 13 15 13 15 16 
1 2 9 10 9 10 9 10 9 10 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 10 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 10 9 11 13 15 16 

1 2 9 10 9 10 9 10 9 11 13 15 13 15 16 
1 2 9 10 9 10 9 10 9 11 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 10 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 10 9 12 13 15 16 
1 2 9 10 9 10 9 10 9 12 13 15 13 15 16 
1 2 9 10 9 10 9 10 9 12 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 10 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 11 9 10 13 15 16 
1 2 9 10 9 10 9 11 9 10 13 15 13 15 16 
1 2 9 10 9 10 9 11 9 10 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 11 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 11 9 11 13 15 16 
1 2 9 10 9 10 9 11 9 11 13 15 13 15 16 
1 2 9 10 9 10 9 11 9 11 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 11 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 11 9 12 13 15 16 
1 2 9 10 9 10 9 11 9 12 13 15 13 15 16 
1 2 9 10 9 10 9 11 9 12 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 11 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 12 9 10 13 15 16 
1 2 9 10 9 10 9 12 9 10 13 15 13 15 16 
1 2 9 10 9 10 9 12 9 10 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 12 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 12 9 11 13 15 16 
1 2 9 10 9 10 9 12 9 11 13 15 13 15 16 
1 2 9 10 9 10 9 12 9 11 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 12 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 12 9 12 13 15 16 
1 2 9 10 9 10 9 12 9 12 13 15 13 15 16 
1 2 9 10 9 10 9 12 9 12 13 15 13 15 13 15 16 
1 2 9 10 9 10 9 12 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 10 9 10 13 15 16 
1 2 9 10 9 11 9 10 9 10 13 15 13 15 16 
1 2 9 10 9 11 9 10 9 10 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 10 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 10 9 11 13 15 16 
1 2 9 10 9 11 9 10 9 11 13 15 13 15 16 
1 2 9 10 9 11 9 10 9 11 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 10 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 10 9 12 13 15 16 
1 2 9 10 9 11 9 10 9 12 13 15 13 15 16 
1 2 9 10 9 11 9 10 9 12 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 10 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 11 9 10 13 15 16 
1 2 9 10 9 11 9 11 9 10 13 15 13 15 16 
1 2 9 10 9 11 9 11 9 10 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 11 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 11 9 11 13 15 16 
1 2 9 10 9 11 9 11 9 11 13 15 13 15 16 
1 2 9 10 9 11 9 11 9 11 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 11 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 11 9 12 13 15 16 
1 2 9 10 9 11 9 11 9 12 13 15 13 15 16 
1 2 9 10 9 11 9 11 9 12 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 11 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 12 9 10 13 15 16 
1 2 9 10 9 11 9 12 9 10 13 15 13 15 16 
1 2 9 10 9 11 9 12 9 10 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 12 9 10 13 15 13 15 13 15 13 15 16 
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1 2 9 10 9 11 9 12 9 11 13 15 16 
1 2 9 10 9 11 9 12 9 11 13 15 13 15 16 
1 2 9 10 9 11 9 12 9 11 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 12 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 12 9 12 13 15 16 
1 2 9 10 9 11 9 12 9 12 13 15 13 15 16 
1 2 9 10 9 11 9 12 9 12 13 15 13 15 13 15 16 
1 2 9 10 9 11 9 12 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 10 9 10 13 15 16 
1 2 9 10 9 12 9 10 9 10 13 15 13 15 16 
1 2 9 10 9 12 9 10 9 10 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 10 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 10 9 11 13 15 16 
1 2 9 10 9 12 9 10 9 11 13 15 13 15 16 
1 2 9 10 9 12 9 10 9 11 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 10 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 10 9 12 13 15 16 
1 2 9 10 9 12 9 10 9 12 13 15 13 15 16 
1 2 9 10 9 12 9 10 9 12 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 10 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 11 9 10 13 15 16 
1 2 9 10 9 12 9 11 9 10 13 15 13 15 16 
1 2 9 10 9 12 9 11 9 10 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 11 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 11 9 11 13 15 16 
1 2 9 10 9 12 9 11 9 11 13 15 13 15 16 
1 2 9 10 9 12 9 11 9 11 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 11 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 11 9 12 13 15 16 
1 2 9 10 9 12 9 11 9 12 13 15 13 15 16 
1 2 9 10 9 12 9 11 9 12 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 11 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 12 9 10 13 15 16 
1 2 9 10 9 12 9 12 9 10 13 15 13 15 16 
1 2 9 10 9 12 9 12 9 10 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 12 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 12 9 11 13 15 16 
1 2 9 10 9 12 9 12 9 11 13 15 13 15 16 
1 2 9 10 9 12 9 12 9 11 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 12 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 12 9 12 13 15 16 
1 2 9 10 9 12 9 12 9 12 13 15 13 15 16 
1 2 9 10 9 12 9 12 9 12 13 15 13 15 13 15 16 
1 2 9 10 9 12 9 12 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 11 9 10 9 10 9 10 13 15 16 
1 2 9 11 9 10 9 10 9 10 13 15 13 15 16 
1 2 9 11 9 10 9 10 9 10 13 15 13 15 13 15 16 
1 2 9 11 9 10 9 10 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 11 9 10 9 10 9 11 13 15 16 
1 2 9 11 9 10 9 10 9 11 13 15 13 15 16 
1 2 9 11 9 10 9 10 9 11 13 15 13 15 13 15 16 
1 2 9 11 9 10 9 10 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 11 9 10 9 10 9 12 13 15 16 
1 2 9 11 9 10 9 10 9 12 13 15 13 15 16 
1 2 9 11 9 10 9 10 9 12 13 15 13 15 13 15 16 
1 2 9 11 9 10 9 10 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 11 9 10 9 11 9 10 13 15 16 
1 2 9 11 9 10 9 11 9 10 13 15 13 15 16 
1 2 9 11 9 10 9 11 9 10 13 15 13 15 13 15 16 

1 2 9 11 9 10 9 11 9 10 13 15 13 15 13 15 13 15 16 
1 2 9 11 9 10 9 11 9 11 13 15 16 
1 2 9 11 9 10 9 11 9 11 13 15 13 15 16 
1 2 9 11 9 10 9 11 9 11 13 15 13 15 13 15 16 
1 2 9 11 9 10 9 11 9 11 13 15 13 15 13 15 13 15 16 
1 2 9 11 9 10 9 11 9 12 13 15 16 
1 2 9 11 9 10 9 11 9 12 13 15 13 15 16 
1 2 9 11 9 10 9 11 9 12 13 15 13 15 13 15 16 
1 2 9 11 9 10 9 11 9 12 13 15 13 15 13 15 13 15 16 
1 2 9 11 9 10 9 12 9 10 13 15 16 
1 2 9 11 9 10 9 12 9 10 13 15 13 15 16 
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